# logarithm aptitude questions

6.

If log10 7 = a, then log10         1         is equal to:
70
A.     – (1 + a)    B.     (1 + a)-1
C.
a
10
D.
1
10a

Explanation:

log10         1
70
= log10 1 – log10 70
= – log10 (7 x 10)
= – (log10 7 + log10 10)
= – (a + 1).

7.

If log10 2 = 0.3010, then log2 10 is equal to:
A.
699
301
B.
1000
301
C.     0.3010    D.     0.6990

Explanation:

log2 10 =     1     =     1     =     10000     =     1000     .
log10 2     0.3010     3010     301

8.

If log10 2 = 0.3010, the value of log10 80 is:
A.     1.6020    B.     1.9030
C.     3.9030    D.     None of these

Explanation:

log10 80     = log10 (8 x 10)
= log10 8 + log10 10
= log10 (23 ) + 1
= 3 log10 2 + 1
= (3 x 0.3010) + 1
= 1.9030.

9.

If log10 5 + log10 (5x + 1) = log10 (x + 5) + 1, then x is equal to:
A.     1    B.     3
C.     5    D.     10

Explanation:

log10 5 + log10 (5x + 1) = log10 (x + 5) + 1

log10 5 + log10 (5x + 1) = log10 (x + 5) + log10 10

log10 [5 (5x + 1)] = log10 [10(x + 5)]

5(5x + 1) = 10(x + 5)

5x + 1 = 2x + 10

3x = 9

x = 3.

10.

The value of         1     +     1     +     1         is:
log3 60     log4 60     log5 60
A.     0    B.     1
C.     5    D.     60